

Some new weighted Leavitt path algebra homomorphisms

Final presentation for mathematics honours

Ruben Zilibowitz

Western Sydney University

2019

Outline

History and introduction

What I found difficult

What went well?

The mathematics

The basics

The formal definition

The motivation

The oriented n-line graph

Directed acyclic graphs

Graphs with cycles

Equality

Weighted graphs

Weighted Lpas

Examples

Simple examples

A more complicated example

An unsolved problem

Some new homomorphisms

Conclusion

Code

Further work

Some history

- ▶ The subject of Leavitt path algebras, or Lpas, is an active research area
- ▶ It is a new subject whose seminal papers came from two groups of authors:
 - ▶ Gene Abrams and Gonzalo Aranda Pino in *The Leavitt path algebra of a graph*
 - ▶ P. Ara, M. A. Moreno, and E. Pardo in *Nonstable K-theory for Graph Algebras*
- ▶ The work in those seminal papers was initiated around the same time in 2004
- ▶ However, these groups worked independently of one another
- ▶ The genesis of the subject is in earlier work during the 1950's by W. G. Leavitt in *The Module Type of a Ring*.

What I found difficult

- ▶ I did not have a strong background in algebra or analysis
- ▶ Lpas are defined using generators and relations
- ▶ It is not immediately clear that the presentation gives something non-zero
- ▶ In general it is difficult to find representations of Lpas in finite matrices
- ▶ It is not obvious, for example, how to know when any two given elements of an Lpa are equal
- ▶ There is, however, a representation for any Lpa inside infinite dimensional matrices over a field

What went well?

- ▶ I wrote some software in the Haskell language to help me try to understand Lpas
- ▶ Actually I worked with weighted Lpas, or wLpas, which are a generalisation of Lpas due to Rozbeh Hazrat.
- ▶ My software can do the following things
 - ▶ Can check if two elements of an wLpa are equal
 - ▶ Caveat: I did not yet prove termination of my algorithm for checking equality!
 - ▶ Can enumerate the basis elements of a wLpa
 - ▶ Can check if a homomorphism defined on the generators of a wLpa is well-defined
 - ▶ Can compute some wLpa invariants
- ▶ I used this software to help me obtain some new homomorphisms

The mathematics

- ▶ What are Leavitt path algebras?
- ▶ I will give a formal definition shortly
- ▶ The subject combines graph theory and ring theory
- ▶ The finite dimensional case has a more combinatorial flavour
- ▶ The general case seems to be more about ring theory

The basics

- ▶ Let E be a directed graph
- ▶ Denote the vertices of E by E^0
- ▶ Denote the edges of E by E^1
- ▶ For any edge e define the *source* $s(e)$ as the vertex at the start of the edge
- ▶ For any edge e define the *range* $r(e)$ as the vertex at the end of the edge
- ▶ For any edge e define the “ghost-edge” e^*

The basics continued

- ▶ A *sink* is a vertex with no outgoing edges
- ▶ A *regular* vertex is a vertex that is not a sink
- ▶ Denote the set of regular vertices in a directed graph E by $\text{Reg}(E)$
- ▶ Consider the oriented n -line graph

- ▶ Then v_n is a sink and v_1, \dots, v_{n-1} are regular.

The formal definition

- ▶ The Leavitt path algebra on a graph is the free K -algebra generated by the vertices, edges, and ghost-edges, modulo the following relations

V $uv = \delta_{uv}v$ for all $u, v \in E^0$

E1 $s(e)e = er(e) = e$ for all $e \in E^1$

E2 $r(e)e^* = e^*s(e) = e^*$ for all $e^* \in (E^1)^*$

CK1 $e^*f = \delta_{ef}r(e)$ for all $e, f \in E^1$

CK2 $v = \sum_{\substack{e \in E^1 \\ s(e)=v}} ee^*$ for all $v \in \text{Reg}(E)$

- ▶ What is a free K -algebra?

- ▶ It is like a non-commutative version of a polynomial ring with coefficients from a field K

The formal definition continued

- ▶ What does modulo mean?
- ▶ It means quotient
- ▶ What is a quotient?
 - ▶ A quotient is a way to obtain a new algebra from an old one by including some relations
 - ▶ It is defined in most algebra texts using set theory.

The motivation

- ▶ Why these relations and what do they mean?
- ▶ In the case of finite directed acyclic graphs these relations describe an algebra with some interesting combinatorial properties
- ▶ What does acyclic mean?
- ▶ It means there are no cycles
- ▶ What is a cycle?
- ▶ A *cycle* in a directed graph is a path e_1, \dots, e_n such that $s(e_i) \neq s(e_j)$ for every $i \neq j$, and $r(e_n) = s(e_1)$

The motivation continued

- ▶ What is a path?
- ▶ A *path* in a directed graph is a finite sequence of edges e_1, \dots, e_n , such that $r(e_i) = s(e_{i+1})$ for all $1 \leq i \leq n - 1$.
- ▶ Note: If we are discussing the Lpa of a graph, then the words path and cycle refer to the corresponding products of these edges, rather than merely sequences of edges

The oriented n -line graph

- Let us revisit the oriented n -line graph example,

- We want to be able to add, multiply, and subtract vertices, edges, and ghost-edges
- How do we define this in a meaningful way?
- Use matrices
- We represent the vertex v_1 as the matrix

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

The oriented n -line graph continued

- ▶ We represent the vertex v_2 as the matrix

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- ▶ See the pattern?
- ▶ Represent vertex v_k as the single-entry matrix with 1 in the k th diagonal entry
- ▶ What about edges?

The oriented n -line graph continued

Representations for the edges are as follows,

- We represent the edge e_1 as the matrix

$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- We represent the edge e_2 as the matrix

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

The oriented n -line graph continued

- ▶ We represent the edge e_k as the single-entry matrix with 1 in the k th row and $(k + 1)$ th column
- ▶ What about ghost-edges?
- ▶ The $*$ operation corresponds to the matrix transpose or adjoint
- ▶ For example e_1^* is represented by

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- ▶ The ghost-edge e_k^* is represented by the single-entry matrix with 1 in the $(k + 1)$ th row and the k th column

The oriented n -line graph continued

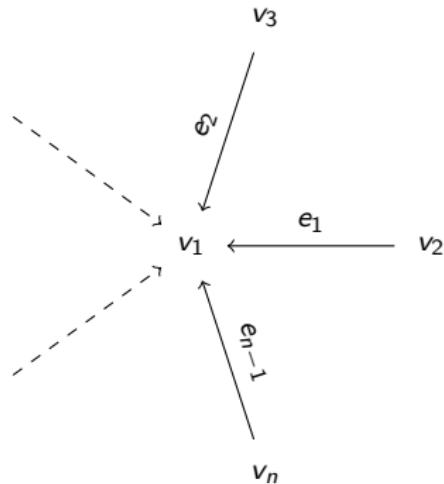
- ▶ Let $M_K(n)$ be the K -algebra of square n by n dimensional matrices over the field K
- ▶ For any directed graph E we will denote the Leavitt path algebra of E with coefficients from the field K by $L_K(E)$
- ▶ For the oriented n -line graph, A_n , we get $L_K(A_n) \cong M_K(n)$
- ▶ What about other directed acyclic graphs?

Directed acyclic graphs

- ▶ Consider any directed acyclic graph E with a sink v
- ▶ Since the graph is finite acyclic, there must be a finite number of paths that end at v . Let this number be $n(v)$.
- ▶ The ideal generated by v , $I(v)$ is isomorphic to $M_K(n(v))$
- ▶ If there is only one sink, then this ideal is the entire Lpa
- ▶ If there is more than one sink, then the Lpa is given by the direct product of the ideals generated by the sinks.

Directed acyclic graphs continued

- ▶ Consider this example,



- ▶ Denote the above graph with n vertices as B_n
- ▶ Denote the oriented n -line graph by A_n
- ▶ Then $L_K(B_n) \cong L_K(A_n) \cong M_K(n)$

Directed acyclic graphs continued

- ▶ For any $n > 0$ there are a finite number of directed acyclic graphs whose Lpa is isomorphic to $M_K(n)$
- ▶ Counting these graphs appears to be a non-trivial problem
- ▶ This problem seems to be worthy of further study
- ▶ I was not able to find anything in the literature about this so far

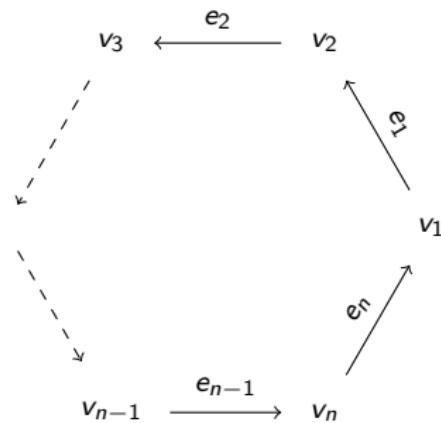
Graphs with cycles

- ▶ For certain types of graphs with cycles, we may still be able to obtain representations in finite matrices over Laurent polynomial rings
- ▶ Consider the loop graph

- ▶ The Lpa for this graph is isomorphic to $K[x, x^{-1}]$, the Laurent polynomial ring over K

Graphs with cycles continued

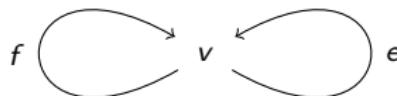
- Or the n -cycle graph



- The Lpa for this graph is isomorphic to $M_{K[x,x^{-1}]}(n)$

Graphs with cycles continued

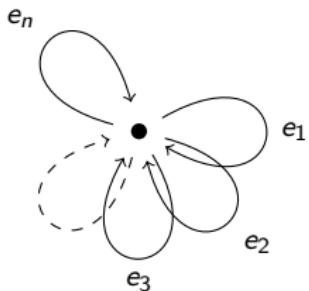
- ▶ Consider the 2-petal graph



- ▶ The Lpa of this graph, call it R , has an unusual property
- ▶ As left R -modules, we have $R \cong R \oplus R$
- ▶ A *module* is like a vector space over a ring
- ▶ W. G. Leavitt was the first person to produce examples of rings having the above property

Graphs with cycles continued

- More generally, consider the n -petal graph for some fixed integer $n > 0$,



- Denote by R^n the direct sum $\underbrace{R \oplus \cdots \oplus R}_{n \text{ times}}$
- The Lpa of this graph, call it R , satisfies $R \cong R^n$
- Moreover this n is the smallest integer m such that $R \cong R^m$

Equality

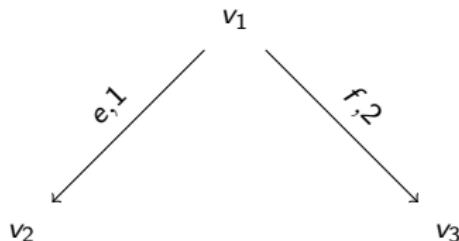
- ▶ In the general case of an Lpa, how do we know if two given elements of the algebra are equal?
- ▶ This is a non-trivial issue since we may not necessarily have a finite representation for the algebra
- ▶ There is a theorem that gives a *basis* for any Lpa, viewed as a K -module
- ▶ Checking equality amounts to reducing elements to their basis form and comparing them
- ▶ This basis will only be finite if the graph is finite acyclic

A Haskell implementation

- ▶ I coded an algorithm using the Haskell language to check for equality of $wLpa$ elements
- ▶ The algorithm works as follows,
 1. First convert the given element of the $wLpa$ to normal form. That is, a K -linear combination of paths
 2. For each path in this expression, find any *forbidden* sub-paths. The term *forbidden* is a technical term!
 3. For each forbidden sub-path found, rewrite this sub-path using the $wLpa$ relations to remove it
 4. Go back to the start and iterate this procedure until no forbidden sub-paths remain. Then stop.
- ▶ A path that contains no forbidden sub-paths is called a *nod-path*
- ▶ Proving termination of the above algorithm would show that nod-paths are a spanning set for the $wLpa$

Weighted graphs

- ▶ We assign positive integer weights to the edges of a directed graph. For example (E, w) given as,



- ▶ Here, E is the unweighted directed graph and w is a function that maps $E^{st} \rightarrow \mathbb{Z}^+$
- ▶ So in this example $w(e) = 1$ and $w(f) = 2$
- ▶ The vertex set is given by

$$E^0 = \{v_1, v_2, v_3\}$$

- ▶ The edge set is given by

$$E^1 = \{e_1, f_1, f_2\}$$

Weighted graphs continued

The formal definition is as follows,

- ▶ Let E^0 be a countable set called *vertices*
- ▶ Let E^{st} be a countable set called *structured edges*
- ▶ Let there be maps $s, r : E^{st} \rightarrow E^0$
- ▶ Let there be a *weight map* $w : E^{st} \rightarrow \mathbb{Z}^+$
- ▶ Define the *edges* as the set $E^1 = \bigcup_{\alpha \in E^{st}} \{\alpha_i \mid 1 \leq i \leq w(\alpha)\}$

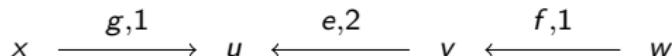
Weighted Leavitt path algebras

The formal definition,

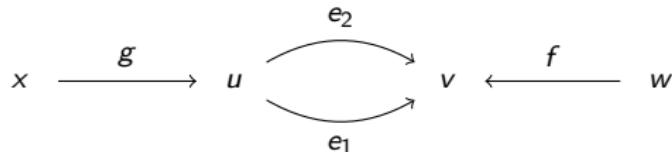
- ▶ A wLpa is the free K -algebra on $E^0 \cup E^1 \cup (E^1)^*$, subject to the following relations
 1. $v_i v_j = \delta_{ij} v_i$ for every $v_i, v_j \in E^0$.
 2. $s(\alpha)\alpha_i = \alpha_i r(\alpha) = \alpha_i$ and $r(\alpha)\alpha_i^* = \alpha_i^* s(\alpha) = \alpha_i^*$ for all $\alpha \in E^{st}$ and $1 \leq i \leq w(\alpha)$.
 3. $\sum_{\{\alpha \in E^{st} | s(\alpha) = v\}} \alpha_i \alpha_j^* = \delta_{ij} v$ for fixed $1 \leq i, j \leq \max\{w(\alpha) | \alpha \in E^{st}, s(\alpha) = v\}$, for all $v \in E^0$.
 4. $\sum_{1 \leq i \leq \max\{w(\alpha), w(\alpha')\}} \alpha_i^* \alpha'_i = \delta_{\alpha\alpha'} r(\alpha)$, for all $\alpha, \alpha' \in E^{st}$.
- ▶ In the above, if $e \in E^{st}$ is a structured edge and $i > w(e)$ then $e_i = 0$.

Some wLpa examples

- ▶ Many simple examples of wLpas are isomorphic to unweighted Lpas
- ▶ For example the wLpa of



- ▶ is isomorphic to the Lpa of



Some wLpa examples continued

The isomorphism is given on the generators as,

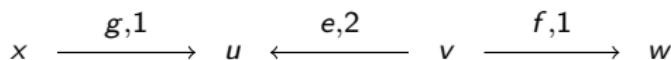
$$\begin{array}{ll} u \mapsto u & e_1 \mapsto e_1^* \\ v \mapsto v & e_2 \mapsto e_2^* \\ w \mapsto w & f_1 \mapsto f \\ x \mapsto x & g_1 \mapsto g \end{array}$$

Some wLpa examples continued

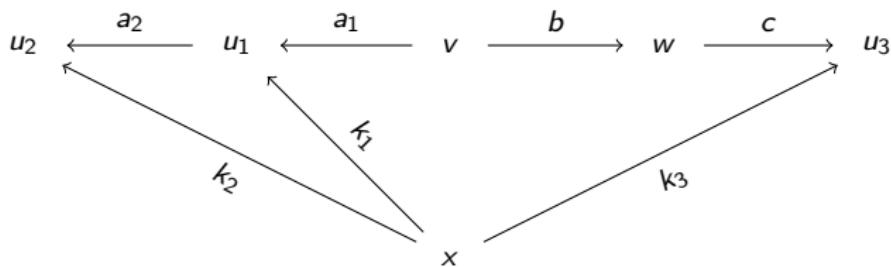
- ▶ To see this is a well defined homomorphism,
 1. Start with the free algebra on the vertices, edges, and ghost edges of the weighted graph
 2. As soon as you have a map from the generators to a ring, it induces a homomorphism on the level of algebra, by the properties of a free algebra
 3. Next one needs to check that the weighted relations will be mapped to zero in the Lpa.
 4. This guarantees a map from the quotient of the free algebra modulo the weighted relations into the Lpa
- ▶ Step 3 can be checked by computer.

Some wLpa examples continued

- ▶ The wLpa of



- ▶ is isomorphic to the Lpa of



Some wLpa examples continued

The isomorphism is given on the generators as,

$$u \mapsto u_1 + u_2 + u_3$$

$$e_1 \mapsto a_1$$

$$v \mapsto v$$

$$e_2 \mapsto a_1 a_2 + bc$$

$$w \mapsto w$$

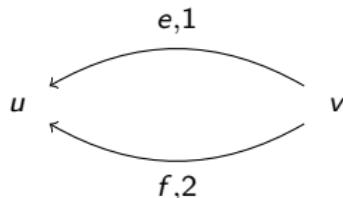
$$f_1 \mapsto b$$

$$x \mapsto x$$

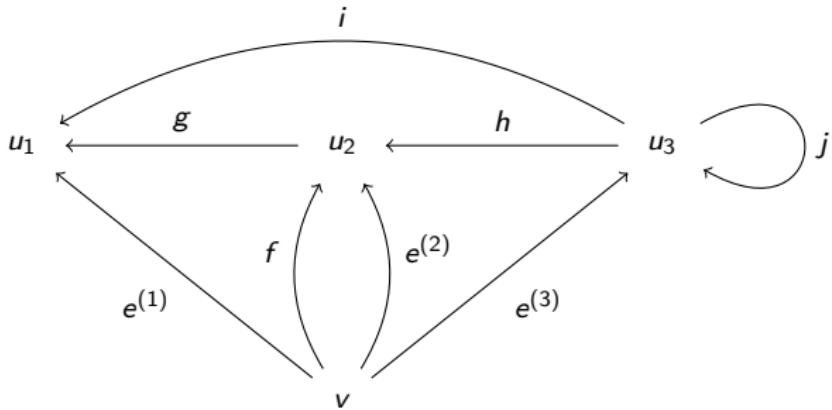
$$g_1 \mapsto k_1 + k_2 + k_3$$

Some wLpa examples continued

- ▶ A more complicated example. The wLpa of



- ▶ this is isomorphic to the Lpa of



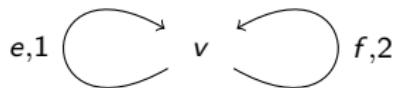
Some wLpa examples continued

The isomorphism is given on the generators as,

$$\begin{array}{ll} u \mapsto u_1 + u_2 + u_3 & e_1 \mapsto e_1 + e_2 + e_3 \\ v \mapsto v & f_1 \mapsto f \\ & f_2 \mapsto fg + e_1 i^* + e_2 h^* + e_3 j^* \end{array}$$

An unsolved problem

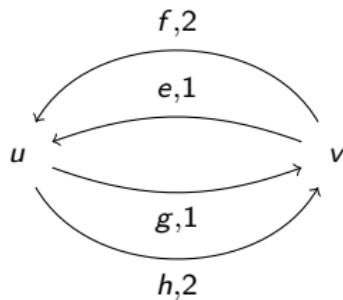
- ▶ The previous example is from a paper in arXiv entitled *The V-monoid of a weighted Leavitt path algebra* by Raimund Preusser
- ▶ In the same paper Preusser gives the following example



- ▶ At the present time it is unknown whether this wLpa is isomorphic to an unweighted Lpa

Some new homomorphisms

- ▶ In my honours thesis I introduced the following weighted graph,



- ▶ I was able to obtain some new homomorphisms using this

Some new homomorphisms continued

$$L_K \left(\begin{matrix} e,1 & \curvearrowright & v & \curvearrowleft & f,2 \end{matrix} \right) \rightarrow L_K \left(\begin{matrix} u & \xleftarrow{e,1} & f,2 & \xrightarrow{g,1} & v \\ & \xleftarrow{h,2} & & & \end{matrix} \right)$$

$$v \mapsto v + u$$

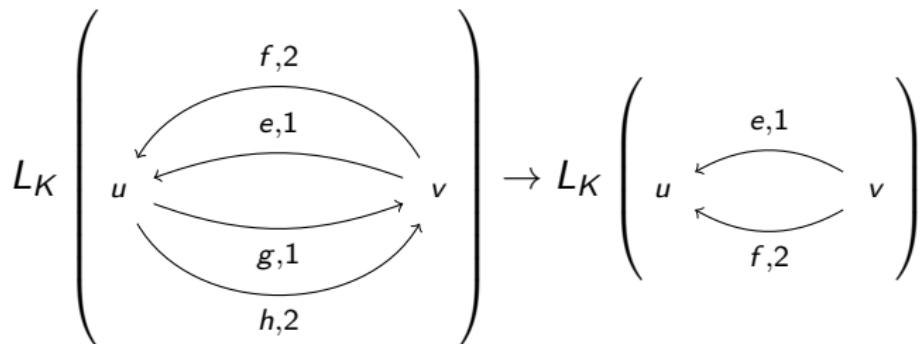
$$f_1 \mapsto f_1 + h_1$$

$$e_1 \mapsto e_1 + g_1$$

$$f_2 \mapsto f_2 + h_2$$

- ▶ Call this map η
- ▶ I claim that η is a monomorphism.

Some new homomorphisms continued



$$u \mapsto u$$

$$e_1 \mapsto e_1$$

$$f_2 \mapsto f_2$$

$$h_1 \mapsto f_1^*$$

$$v \mapsto v$$

$$f_1 \mapsto f_1$$

$$g_1 \mapsto f_2^*$$

$$h_2 \mapsto e_1^*$$

- ▶ Call this map ρ
- ▶ Observe that the generators of the codomain all appear in the range of ρ
- ▶ Therefore ρ is an epimorphism

Some new homomorphisms continued

- ▶ Define $Q = \{h_2^* - e_1, h_1^* - f_1, g_1^* - f_2\}$
- ▶ In my honours thesis I show that $\ker(\rho) = I(Q)$
- ▶ Let $\theta = \rho \circ \eta$
- ▶ So θ is given by

$$\begin{array}{ll} v \mapsto v + u & f_1 \mapsto f_1 + f_1^* \\ e_1 \mapsto e_1 + f_2^* & f_2 \mapsto f_2 + e_1^* \end{array}$$

- ▶ Let $R = \{e_1 - f_2^*, f_1 - f_1^*\}$
- ▶ I claim that $\ker(\theta) = I(R)$

Some new homomorphisms continued

- ▶ In my honours thesis I introduced the following unweighted graph



- ▶ I was able to obtain some new homomorphisms using this

Some new homomorphisms continued

There is a homomorphism,

$$L_K \left(\begin{array}{ccc} & i & \\ u_1 & \xleftarrow{g} & u_2 & \xleftarrow{h} & u_3 \\ & j & \end{array} \right) \longrightarrow$$

$$L_K \left(\begin{array}{ccc} e,1 & \xrightarrow{\quad} & v & \xleftarrow{\quad} & f,2 \end{array} \right)$$

Some new homomorphisms continued

- ▶ It is given on the generators by

$$u_1 \mapsto x^*x$$

$$u_2 \mapsto xx^*$$

$$u_3 \mapsto y^*y - x^*x - xx^*$$

$$g \mapsto x$$

$$h \mapsto y - yz$$

$$i \mapsto y(z - yy^*)$$

$$j \mapsto y^2y^*$$

where,

$$x = f_1^*f_2 \quad y = f_2^*e_1 \quad z = f_2^*f_2$$

- ▶ I claim this map is mono

Some new homomorphisms continued

There is a representation in 2 by 2 matrices as follows,

$$L_K \left(\begin{array}{cc} & e,1 \\ u & \swarrow \searrow \\ & f,2 \\ & v \end{array} \right) \hookrightarrow M_R(2)$$

where

$$R = L_K \left(\begin{array}{ccccc} & & & & \\ & e,1 & \curvearrowleft & v & \curvearrowleft \\ & & & & f,2 \end{array} \right)$$

Some new homomorphisms continued

It is given on the generators as,

$$e_1 \mapsto \begin{bmatrix} 0 & e_1 \\ 0 & 0 \end{bmatrix}$$

$$f_1 \mapsto \begin{bmatrix} 0 & f_1 \\ 0 & 0 \end{bmatrix}$$

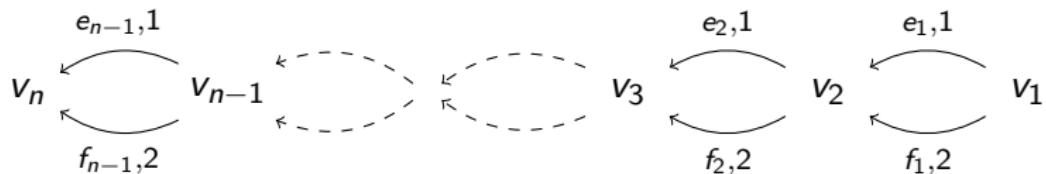
$$f_2 \mapsto \begin{bmatrix} 0 & f_2 \\ 0 & 0 \end{bmatrix}$$

$$u \mapsto \begin{bmatrix} 0 & 0 \\ 0 & v \end{bmatrix}$$

$$v \mapsto \begin{bmatrix} v & 0 \\ 0 & 0 \end{bmatrix}$$

Some new homomorphisms continued

- More generally, let (G_n, w_{G_n}) be the following weighted graph,



- There is a representation,

$$L_K(G_n, w_{G_n}) \hookrightarrow M_R(n)$$

for all $n > 1$

Some new homomorphisms continued

- ▶ It is given by,

$$\begin{aligned} e_{i,1} &\mapsto e_1 c_{i,i+1} & f_{i,1} &\mapsto f_1 c_{i,i+1} & f_{i,2} &\mapsto f_2 c_{i,i+1} \\ v_i &\mapsto v c_{i,i} \end{aligned}$$

where $c_{i,j}$ is the n by n single-entry matrix with 1 in the i th row and j th column.

- ▶ Question: how to generalise this result further?

Some new homomorphisms continued

- ▶ There is a homomorphism as follows,

$$L_K \left(\begin{array}{ccc} & f,2 & \\ & \swarrow \curvearrowright & \searrow \\ u & e,1 & v \\ & \swarrow \curvearrowright & \searrow \\ & g,1 & \\ & \swarrow \curvearrowright & \searrow \\ & h,2 & \end{array} \right) \rightarrow L_{K[x,x^{-1}]} \left(\begin{array}{ccc} & e,1 & \\ & \swarrow \curvearrowright & \searrow \\ u & & v \\ & \swarrow \curvearrowright & \searrow \\ & f,2 & \end{array} \right)$$

- ▶ Note that in the codomain the coefficients come from a Laurent polynomial $*$ -ring
- ▶ We assume that $x^* = x^{-1}$

Some new homomorphisms continued

- ▶ It is given on the generators as,

$$\begin{array}{ll} e_1 \mapsto xe_1 & g_1 \mapsto xf_2^* \\ f_1 \mapsto xf_1 & h_1 \mapsto xf_1^* \\ f_2 \mapsto xf_2 & h_2 \mapsto xe_1^* \end{array} \quad \begin{array}{l} u \mapsto u \\ v \mapsto v \end{array}$$

- ▶ I claim this map is mono

Some new homomorphisms continued

- ▶ Composing an earlier example with the above example gives a monomorphism,

$$L_K \left(\begin{array}{ccc} & e,1 & \\ & \curvearrowleft & \curvearrowright \\ & v & f,2 \end{array} \right) \rightarrow L_{K[x,x^{-1}]} \left(\begin{array}{ccc} & e,1 & \\ & \curvearrowleft & \curvearrowright \\ u & & v \\ & \curvearrowleft & \curvearrowright \\ & f,2 & \end{array} \right)$$

- ▶ The map is given by,

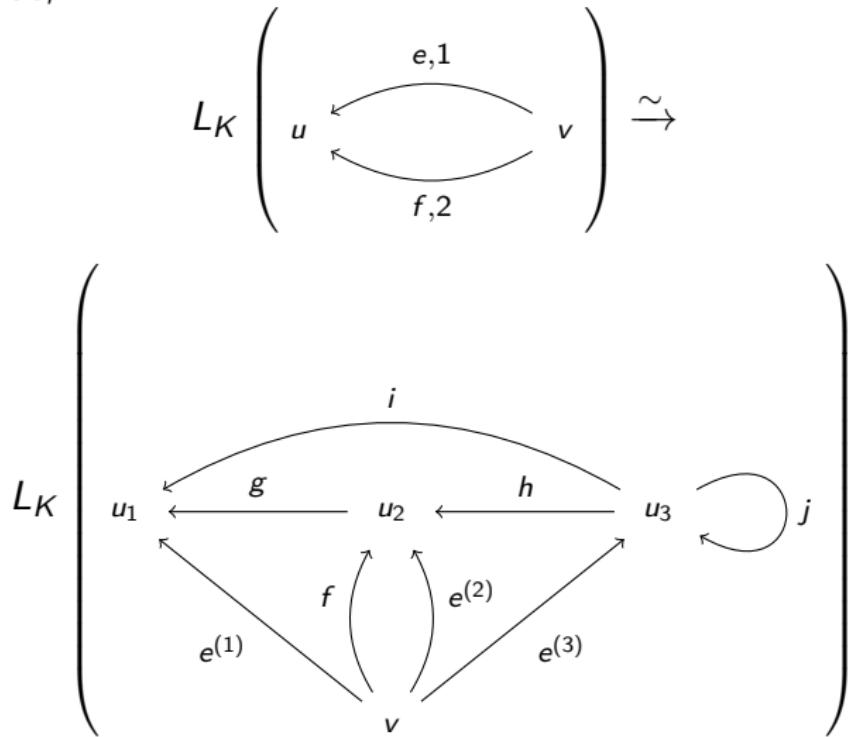
$$e_1 \mapsto x(e_1 + f_2^*)$$

$$f_1 \mapsto x(f_1 + f_1^*) \quad v \mapsto u + v$$

$$f_2 \mapsto x(f_2 + e_1^*)$$

Some new homomorphisms continued

Recall that,



Some new homomorphisms continued

- ▶ It follows that our $wLpa$,

$$L_K \left(\begin{array}{ccc} e,1 & \curvearrowright & f,2 \\ & v & \curvearrowleft \end{array} \right)$$

- ▶ is sitting inside an unweighted Lpa over a Laurent polynomial $*$ -ring

Where is the code?

- ▶ The Haskell code I used is freely available on Github at
[https://github.com/rzil/honours/tree/master/
LeavittPathAlgebras](https://github.com/rzil/honours/tree/master/LeavittPathAlgebras)
- ▶ All of the above homomorphisms can be verified computationally using this code
- ▶ Coming up with these maps, I found enjoyable. I would encourage you to try it!

Further work

- ▶ In the above mentioned examples, there were a number of claims yet to receive proof
- ▶ For example, showing that certain maps are mono or finding generating sets for the kernels
- ▶ One idea for showing some of the injectivity claims, suggested by R. Preusser, is to show that nod-paths are mapped to distinct nod-paths
- ▶ Most of the maps given above were verified using computer. I would like to prove some of them on paper.
- ▶ The basis algorithm described earlier has not been proven to terminate. I would like to prove this.

Thank you for listening!