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Some history

I The subject of Leavitt path algebras, or Lpas, is an active
research area

I It is a new subject whose seminal papers came from two
groups of authors:

I Gene Abrams and Gonzalo Aranda Pino in The Leavitt path
algebra of a graph

I P. Ara, M. A. Moreno, and E. Pardo in Nonstable K-theory for
Graph Algebras

I The work in those seminal papers was initiated around the
same time in 2004

I However, these groups worked independently of one another
I The genesis of the subject is in earlier work during the 1950’s

by W. G. Leavitt in The Module Type of a Ring.



What I found difficult

I I did not have a strong background in algebra or analysis
I Lpas are defined using generators and relations
I It is not immediately clear that the presentation gives

something non-zero
I In general it is difficult to find representations of Lpas in finite

matrices
I It is not obvious, for example, how to know when any two

given elements of an Lpa are equal
I There is, however, a representation for any Lpa inside infinite

dimensional matrices over a field



What went well?

I I wrote some software in the Haskell language to help me try
to understand Lpas

I Actually I worked with weighted Lpas, or wLpas, which are a
generalisation of Lpas due to Roozbeh Hazrat.

I My software can do the following things
I Can check if two elements of an wLpa are equal
I Caveat: I did not yet prove termination of my algorithm for

checking equality!
I Can enumerate the basis elements of a wLpa
I Can check if a homomorphism defined on the generators of a

wLpa is well-defined
I Can compute some wLpa invariants

I I used this software to help me obtain some new
homomorphisms



The mathematics

I What are Leavitt path algebras?
I I will give a formal definition shortly
I The subject combines graph theory and ring theory
I The finite dimensional case has a more combinatorial flavour
I The general case seems to be more about ring theory



The basics

I Let E be a directed graph
I Denote the vertices of E by E 0

I Denote the edges of E by E 1

I For any edge e define the source s(e) as the vertex at the
start of the edge

I For any edge e define the range r(e) as the vertex at the end
of the edge

I For any edge e define the “ghost-edge” e∗



The basics continued

I A sink is a vertex with no outgoing edges
I A regular vertex is a vertex that is not a sink
I Denote the set of regular vertices in a directed graph E by

Reg(E )
I Consider the oriented n-line graph

v1 v2 v3 vn−1 vn
e1 e2 en−1

I Then vn is a sink and v1, · · · , vn−1 are regular.



The formal definition

I The Leavitt path algebra on a graph is the free K -algebra
generated by the vertices, edges, and ghost-edges, modulo the
following relations

V uv = δuv v for all u, v ∈ E 0

E1 s(e)e = er(e) = e for all e ∈ E 1

E2 r(e)e∗ = e∗s(e) = e∗ for all e∗ ∈ (E 1)∗
CK1 e∗f = δef r(e) for all e, f ∈ E 1

CK2 v =
∑

e∈E 1

s(e)=v

ee∗ for all v ∈ Reg(E )

I What is a free K -algebra?
I It is like a non-commutative version of a polynomial ring with

coefficients from a field K



The formal definition continued

I What does modulo mean?
I It means quotient
I What is a quotient?

I A quotient is a way to obtain a new algebra from an old one
by including some relations

I It is defined in most algebra texts using set theory.



The motivation

I Why these relations and what do they mean?
I In the case of finite directed acyclic graphs these relations

describe an algebra with some interesting combinatorial
properties

I What does acyclic mean?
I It means there are no cycles
I What is a cycle?
I A cycle in a directed graph is a path e1, · · · , en such that

s(ei ) 6= s(ej) for every i 6= j , and r(en) = s(e1)



The motivation continued

I What is a path?
I A path in a directed graph is a finite sequence of edges

e1, · · · , en, such that r(ei ) = s(ei+1) for all 1 ≤ i ≤ n − 1.
I Note: If we are discussing the Lpa of a graph, then the words

path and cycle refer to the corresponding products of these
edges, rather than merely sequences of edges



The oriented n-line graph

I Let us revisit the oriented n-line graph example,

v1 v2 v3 vn−1 vn
e1 e2 en−1

I We want to be able to add, multiply, and subtract vertices,
edges, and ghost-edges

I How do we define this in a meaningful way?
I Use matrices
I We represent the vertex v1 as the matrix

1 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0





The oriented n-line graph continued

I We represent the vertex v2 as the matrix
0 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0


I See the pattern?
I Represent vertex vk as the single-entry matrix with 1 in the

kth diagonal entry
I What about edges?



The oriented n-line graph continued

Representations for the edges are as follows,
I We represent the edge e1 as the matrix

0 1 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0


I We represent the edge e2 as the matrix

0 0 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0





The oriented n-line graph continued

I We represent the edge ek as the single-entry matrix with 1 in
the kth row and (k + 1)th column

I What about ghost-edges?
I The ∗ operation corresponds to the matrix transpose or

adjoint
I For example e∗1 is represented by

0 0 0 . . . 0
1 0 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 0


I The ghost-edge e∗k is represented by the single-entry matrix

with 1 in the (k + 1)th row and the kth column



The oriented n-line graph continued

I Let MK (n) be the K -algebra of square n by n dimensional
matrices over the field K

I For any directed graph E we will denote the Leavitt path
algebra of E with coefficients from the field K by LK (E )

I For the oriented n-line graph, An, we get LK (An) ∼= MK (n)
I What about other directed acyclic graphs?



Directed acyclic graphs

I Consider any directed acyclic graph E with a sink v
I Since the graph is finite acyclic, there must be a finite number

of paths that end at v . Let this number be n(v).
I The ideal generated by v , I(v) is isomorphic to MK (n(v))
I If there is only one sink, then this ideal is the entire Lpa
I If there is more than one sink, then the Lpa is given by the

direct product of the ideals generated by the sinks.



Directed acyclic graphs continued

I Consider this example,

v1 v2

v3

vn

e1

e 2

en−
1

I Denote the above graph with n vertices as Bn
I Denote the oriented n-line graph by An
I Then LK (Bn) ∼= LK (An) ∼= MK (n)



Directed acyclic graphs continued

I For any n > 0 there are a finite number of directed acyclic
graphs whose Lpa is isomorphic to MK (n)

I Counting these graphs appears to be a non-trivial problem
I This problem seems to be worthy of further study
I I was not able to find anything in the literature about this so

far



Graphs with cycles

I For certain types of graphs with cycles, we may still be able to
obtain representations in finite matrices over Laurent
polynomial rings

I Consider the loop graph

v e

I The Lpa for this graph is isomorphic to K [x , x−1], the Laurent
polynomial ring over K



Graphs with cycles continued

I Or the n-cycle graph

v1

v2v3

vn−1 vn

e1

e2

en−1

e n

I The Lpa for this graph is isomorphic to MK [x ,x−1](n)



Graphs with cycles continued

I Consider the 2-petal graph

v ef

I The Lpa of this graph, call it R, has an unusual property
I As left R-modules, we have R ∼= R ⊕ R
I A module is like a vector space over a ring
I W. G. Leavitt was the first person to produce examples of

rings having the above property



Graphs with cycles continued

I More generally, consider the n-petal graph for some fixed
integer n > 0,

e1

e2
e3

en

I Denote by Rn the direct sum R ⊕ · · · ⊕ R︸ ︷︷ ︸
n times

I The Lpa of this graph, call it R, satisfies R ∼= Rn

I Moreover this n is the smallest integer m such that R ∼= Rm



Equality

I In the general case of an Lpa, how do we know if two given
elements of the algebra are equal?

I This is a non-trivial issue since we may not necessarily have a
finite representation for the algebra

I There is a theorem that gives a basis for any Lpa, viewed as a
K -module

I Checking equality amounts to reducing elements to their basis
form and comparing them

I This basis will only be finite if the graph is finite acyclic



A Haskell implementation

I I coded an algorithm using the Haskell language to check for
equality of wLpa elements

I The algorithm works as follows,
1. First convert the given element of the wLpa to normal form.

That is, a K -linear combination of paths
2. For each path in this expression, find any forbidden sub-paths.

The term forbidden is a technical term!
3. For each forbidden sub-path found, rewrite this sub-path using

the wLpa relations to remove it
4. Go back to the start and iterate this procedure until no

forbidden sub-paths remain. Then stop.
I A path that contains no forbidden sub-paths is called a

nod-path
I Proving termination of the above algorithm would show that

nod-paths are a spanning set for the wLpa



Weighted graphs
I We assign positive integer weights to the edges of a directed

graph. For example (E ,w) given as,
v1

v2 v3

e,1

f ,2
I Here, E is the unweighted directed graph and w is a function

that maps E st → Z+

I So in this example w(e) = 1 and w(f ) = 2
I The vertex set is given by

E 0 = {v1, v2, v3}

I The edge set is given by

E 1 = {e1, f1, f2}



Weighted graphs continued

The formal definition is as follows,
I Let E 0 be a countable set called vertices
I Let E st be a countable set called structured edges
I Let there be maps s, r : E st → E 0

I Let there be a weight map w : E st → Z+

I Define the edges as the set E 1 = ∪α∈E st{αi | 1 ≤ i ≤ w(α)}



Weighted Leavitt path algebras

The formal definition,
I A wLpa is the free K -algebra on E 0 ∪ E 1 ∪ (E 1)∗, subject to

the following relations
1. vivj = δijvi for every vi , vj ∈ E 0.
2. s(α)αi = αi r(α) = αi and r(α)α∗i = α∗i s(α) = α∗i for all

α ∈ E st and 1 ≤ i ≤ w(α).
3.

∑
{α∈E st |s(α)=v} αiα

∗
j = δijv for fixed

1 ≤ i , j ≤ max{w(α) | α ∈ E st , s(α) = v}, for all v ∈ E 0.
4.

∑
1≤i≤max{w(α),w(α′)} α

∗
i α
′
i = δαα′r(α), for all α, α′ ∈ E st .

I In the above, if e ∈ E st is a structured edge and i > w(e)
then ei = 0.



Some wLpa examples

I Many simple examples of wLpas are isomorphic to unweighted
Lpas

I For example the wLpa of

x u v w
e,2 f ,1g ,1

I is isomorphic to the Lpa of

x u v w

e1

e2

fg



Some wLpa examples continued

The isomorphism is given on the generators as,

u 7→ u
v 7→ v
w 7→ w
x 7→ x

e1 7→ e∗1
e2 7→ e∗2
f1 7→ f
g1 7→ g



Some wLpa examples continued

I To see this is a well defined homomorphism,
1. Start with the free algebra on the vertices, edges, and ghost

edges of the weighted graph
2. As soon as you have a map from the generators to a ring, it

induces a homomorphism on the level of algebra, by the
properties of a free algebra

3. Next one needs to check that the weighted relations will be
mapped to zero in the Lpa.

4. This guarantees a map from the quotient of the free algebra
modulo the weighted relations into the Lpa

I Step 3 can be checked by computer.



Some wLpa examples continued

I The wLpa of

x u v w
e,2 f ,1g ,1

I is isomorphic to the Lpa of

x

v w u3u1u2
b ca1a2

k1

k2 k3



Some wLpa examples continued

The isomorphism is given on the generators as,

u 7→ u1 + u2 + u3

v 7→ v
w 7→ w
x 7→ x

e1 7→ a1

e2 7→ a1a2 + bc
f1 7→ b
g1 7→ k1 + k2 + k3



Some wLpa examples continued

I A more complicated example. The wLpa of

u v

e,1

f ,2

I this is isomorphic to the Lpa of

u1 u2 u3

v

e(2)f

e(1) e(3)

hg

i

j



Some wLpa examples continued

The isomorphism is given on the generators as,

u 7→ u1 + u2 + u3

v 7→ v

e1 7→ e1 + e2 + e3

f1 7→ f
f2 7→ fg + e1i∗ + e2h∗ + e3j∗



An unsolved problem

I The previous example is from a paper in arXiv entitled The
V-monoid of a weighted Leavitt path algebra by Raimund
Preusser

I In the same paper Preusser gives the following example

v f ,2e,1

I At the present time it is unknown whether this wLpa is
isomorphic to an unweighted Lpa



Some new homomorphisms

I In my honours thesis I introduced the following weighted
graph,

u v

e,1

f ,2

h,2

g ,1

I I was able to obtain some new homomorphisms using this



Some new homomorphisms continued

LK

 v f ,2e,1

→ LK


u v

e,1

f ,2

h,2

g ,1


v 7→ v + u

e1 7→ e1 + g1

f1 7→ f1 + h1

f2 7→ f2 + h2

I Call this map η
I I claim that η is a monomorphism.



Some new homomorphisms continued

LK


u v

e,1

f ,2

h,2

g ,1


→ LK

 u v

e,1

f ,2



u 7→ u
v 7→ v

e1 7→ e1

f1 7→ f1
f2 7→ f2
g1 7→ f ∗2

h1 7→ f ∗1
h2 7→ e∗1

I Call this map ρ
I Observe that the generators of the codomain all appear in the

range of ρ
I Therefore ρ is an epimorphism



Some new homomorphisms continued

I Define Q = {h∗2 − e1, h∗1 − f1, g∗1 − f2}
I In my honours thesis I show that ker(ρ) = I(Q)
I Let θ = ρ ◦ η
I So θ is given by

v 7→ v + u
e1 7→ e1 + f ∗2

f1 7→ f1 + f ∗1
f2 7→ f2 + e∗1

I Let R = {e1 − f ∗2 , f1 − f ∗1 }
I I claim that ker(θ) = I(R)



Some new homomorphisms continued

I In my honours thesis I introduced the following unweighted
graph

u1 u2 u3
hg

i

j

I I was able to obtain some new homomorphisms using this



Some new homomorphisms continued

There is a homomorphism,

LK

 u1 u2 u3
hg

i

j

 −→

LK

 v f ,2e,1





Some new homomorphisms continued

I It is given on the generators by

u1 7→ x∗x
u2 7→ xx∗

u3 7→ y∗y − x∗x − xx∗

g 7→ x
h 7→ y − yz
i 7→ y(z − yy∗)
j 7→ y2y∗

where,
x = f ∗1 f2 y = f ∗2 e1 z = f ∗2 f2

I I claim this map is mono



Some new homomorphisms continued

There is a representation in 2 by 2 matrices as follows,

LK

 u v

e,1

f ,2

 ↪→ MR(2)

where

R = LK

 v f ,2e,1





Some new homomorphisms continued

It is given on the generators as,

e1 7→
[

0 e1
0 0

]

f1 7→
[

0 f1
0 0

]

f2 7→
[

0 f2
0 0

]
u 7→

[
0 0
0 v

]

v 7→
[
v 0
0 0

]



Some new homomorphisms continued

I More generally, let (Gn,wGn ) be the following weighted graph,

v1v2

e1,1

f1,2

v3

e2,1

f2,2

vn−1vn

en−1,1

fn−1,2

I There is a representation,

LK (Gn,wGn ) ↪→ MR(n)

for all n > 1



Some new homomorphisms continued

I It is given by,

ei ,1 7→ e1ci ,i+1 fi ,1 7→ f1ci ,i+1 fi ,2 7→ f2ci ,i+1

vi 7→ vci ,i

where ci ,j is the n by n single-entry matrix with 1 in the ith
row and jth column.

I Question: how to generalise this result further?



Some new homomorphisms continued

I There is a homomorphism as follows,

LK


u v

e,1

f ,2

h,2

g ,1


→ LK [x ,x−1]

 u v

e,1

f ,2



I Note that in the codomain the coefficients come from a
Laurent polynomial ∗-ring

I We assume that x∗ = x−1



Some new homomorphisms continued

I It is given on the generators as,

e1 7→ xe1

f1 7→ xf1
f2 7→ xf2

g1 7→ xf ∗2
h1 7→ xf ∗1
h2 7→ xe∗1

u 7→ u
v 7→ v

I I claim this map is mono



Some new homomorphisms continued

I Composing an earlier example with the above example gives a
monomorphism,

LK

 v f ,2e,1

→ LK [x ,x−1]

 u v

e,1

f ,2


I The map is given by,

e1 7→ x(e1 + f ∗2 )
f1 7→ x(f1 + f ∗1 )
f2 7→ x(f2 + e∗1)

v 7→ u + v



Some new homomorphisms continued

Recall that,

LK

 u v

e,1

f ,2

 ∼−→

LK


u1 u2 u3

v

e(2)f

e(1) e(3)

hg

i

j





Some new homomorphisms continued

I It follows that our wLpa,

LK

 v f ,2e,1


I is sitting inside an unweighted Lpa over a Laurent polynomial
∗-ring



Where is the code?

I The Haskell code I used is freely available on Github at
https://github.com/rzil/honours/tree/master/

LeavittPathAlgebras
I All of the above homomorphisms can be verified

computationally using this code
I Coming up with these maps, I found enjoyable. I would

encourage you to try it!

https://github.com/rzil/honours/tree/master/LeavittPathAlgebras
https://github.com/rzil/honours/tree/master/LeavittPathAlgebras


Further work

I In the above mentioned examples, there were a number of
claims yet to receive proof

I For example, showing that certain maps are mono or finding
generating sets for the kernels

I One idea for showing some of the injectivity claims, suggested
by R. Preusser, is to show that nod-paths are mapped to
distinct nod-paths

I Most of the maps given above were verified using computer. I
would like to prove some of them on paper.

I The basis algorithm described earlier has not been proven to
terminate. I would like to prove this.



Thank you for listening!
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