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WHAT IS A GAME?


A game is played between two players, usually called O and P (Opponent and 
Player). A game is played on an arena which is an ordered labelled forest. 
Player O always starts first. The last player to make a valid move wins. Player O 
starts by choosing some root vertex in the forest. In a linear game [2] play 
proceeds by each player choosing a successor vertex to the last choice by the 
opposite player. In a pointer game [3] player P has additional moves 
available; at each move they can play a successor vertex to any previous O-
move, not only the last one. Linear games can model linear types, whilst pointer 
games are needed to model more general purpose functional programming. 
There are ways of composing winning strategies, giving a categorical structure; 
the algorithms for doing this are called interaction [4].

FUTURE WORK


* Cartesian closed categories with finite coproducts.

* Parallelism techniques for interaction of winning strategies.

* Infinite games and recursive types.

* Cartesian closed categories with a (weak) natural numbers object 

METHODS


Complement the theoretical approach by developing software for:

* Generating examples of games and strategies.

* Composition of winning strategies, aka “interaction".

* Lambda calculus computations such as beta reduction.

* Visualising games and strategies.

Compare results of equivalent algorithms such as interaction and beta 
reduction. Make conjectures, prove theorems, generalise.
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RESULTS


We start by considering a free CCC, , over the group  with two elements. It is a theorem that we can obtain a natural isomorphism between identity 
functors  with the following property: for any lambda term  of type  we have , where  denotes the short-beta-long-eta 
normal form [6] of  and  denotes the system of reductions involving beta, projection, and cancelling constants.


If we instead consider starting with the group  being the free group on a countably infinite number of generators, we can extend our definition above so 
that  where  is a labelled atomic type on the left and an invertible constant on the right. This leads to the following correspondences.
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Game Semantics


Arena

Arena for labelled type 

Winning P-strategy for arena 

Winning P-strategy corresponding to term 

Interaction

Interaction of winning P-strategies  after  

Typed Lambda Calculus


Type with labelled atoms, aka “labelled type”




Term of labelled type B, such that A is the tree of constants* in 

, for labelled types  and 


Intermediate step in composition of terms

, for labelled types , , 

A
A

f : A → B

g : B2 → C f : A → B1

ϕA ∘ ϕA
ϕB ∘ ϕB

ϕA→B ⋅ f ≡β ϕB ∘ f ∘ ϕ−1
A A B

(ϕB2→C ⋅ g) ∘ (ϕA→B1
⋅ f ) A B C

In the right hand column in the above, we can normalise with  and then compute a tree representation* of the lambda terms, closely related to 
Böhm trees [5], in order to visualise the data more clearly. These results provide us with some simple tools for performing important computations. 
There is the possibility of generalisations to finite coproducts among other things. The simplicity and generalisability make these ideas compelling.

↦β⋆



Starting with three arenas as follows: 
 
 
 
 
 
 
 
 
 
We obtain arenas for the “internal-homs” as follows: 
 
 
 
 
 
 
 
 
 
 
Winning P-strategies in pointer games are given by ordered labelled forests with justification 
pointers [4]. These are the grey arrows pointing to ancestor vertices in the below forests. Every P-
move must point to some earlier O-move whose label is a parent in the arena. This example shows 
composition of two suc strategies, so named because they compute the successor on Church numerals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compute the interaction one starts at a root vertex in the left 
strategy and follows a path downward. Each time one encounters a 
move that is common to both arenas, one swaps strategies in such 
a way that the pointers between common moves always match up.
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INTRODUCTION


Typed functional programming has become an important part of modern day 
software development. Part of the reason for this is the mathematical nature of 
such languages. The origin of functional programming is the lambda calculus 
[5]. It is well know there is an isomorphism between typed lambda calculus 
and free cartesian closed categories (CCCs) [1]. Game semantics [2] 
provides us new tools for understanding properties of functional languages and 
proving correctness of programs, using ideas from game theory. We wish to 
focus on the game semantics of a free cartesian closed category as a definitive 
account of this has not yet appeared.


